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Methods of computing the  mass-flow r a t e  of nonperfect gases 

a r e  discussed. 

sonic-flow nozzle a r e  given f o r  a i r ,  nitrogen, oxygen, normal 

and para-hydrogen, argon, helium, steam, methane, and n a t u r a l  

gas .  The pressure ranges t o  100x10 N/m (- 100 atm) . For 

steam, the  temperature range i s  from 550 t o  800 K.  For t h e  

o ther  gases, t h e  temperature range i s  from 250 t o  400 K O  

Data f o r  computing mass-flow r a t e  through a 

5 2  

INTRODUCTION 

When flow meters a r e  used f o r  measuring t h e  mass-flow r a t e  of gases, 

e r r o r s  may a r i s e  i f  t h e  flow r e l a t i o n s  t h a t  a r e  used i n  data reduction 

involve t h e  assumption t h a t  t h e  gas i s  per fec t .  For t h i s  report ,  a 

p e r f e c t  gas i s  defined as  one having an invar ian t  s p e c i f i c  hea t  and a 

compressibil i ty f a c t o r  of uni ty .  A p e r f e c t  gas i s  t o  be dis t inguished 

from an i d e a l  gas, which has a temperature-dependent s p e c i f i c  heat  and 

uni ty  compressibil i ty f a c t o r .  A nonperfect gas i s  a r e a l  gas. The 

assumption t h a t  the gas i s  p e r f e c t  i s  s u f f i c i e n t l y  accurate f o r  computing 
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t h e  flow of such gases as a i r  and nitrogen a t  atmospheric pressure and room 

temperature. However, for gases a t  high pressure or low temperatures, 

s i g n i f i c a n t  e r r o r s  w i l l  r e s u l t  i f  t h e  perfect-gas flow r e l a t i o n s  a r e  used. 

There a r e  a number of cases where the  real-gas correct ions a r e  simple 

t o  apply. For thesevcases ,  the  changes i n  pressure and temperature of t h e  

gas as  it flows through the  meter a r e  much smaller than the respect ive 

absolute  l e v e l s  of pressure and temperature; the  flow can then be considered 

incompressible. It i s  then only necessary t o  know the gas density,which can 

be determined from t h e  pressure and temperature. I n  references [l, 2, and 31 

t h e  d e n s i t i e s  or compressibil i ty f a c t o r s  of some common gases a r e  tabulated 

as functions of  pressure and temperature. For these cases, t h e  real-gas 

correct ion cons is t s  of using an accurate  value of densi ty  r a t h e r  than a 

value t h a t  would r e s u l t  from assuming t h e  gas t o  be p e r f e c t .  

density can be calculated from an equation o f  s t a t e ,  or e l s e  obtained from 

a tabula t ion ,  such as references [l, 2, or 31, of densi ty  or compressibil i ty 

fac tor  a s  a function of pressure and temperature. Two examples where 

incompressible flow may be assumed are :  

The cor rec t  

1. A volumetric flowmeter such as a turbine-type meter where t h e  

pressure drop across the  meter i s  much smaller than t h e  absolute 

l e v e l  of pressure.  

A head-type meter such as a nozzle or o r i f i c e  operating a t  a high 

pressure l e v e l  where the pressure drop across t h e  meter i s  much 

smaller than t h e  absolute l e v e l  of pressure.  

2.  

The mater ia l  presented i n  t h i s  repor t  appl ies  t o  head-type flowmeters 

through which t h e  flow can be considered one-dimensional and i sen t ropic .  
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Two such flowmeters a r e  the  nozzle and t h e  ventur i .  I n  both of  these meters, 

the flow from t h e  upstream plenum t o  the  flowmeter t h r o a t  can be considered 

one-dimensional and i sen t ropic  t o  a good approximation. Actual deviations 

from these  conditions can be 'handled by applying a multiplying f a c t o r  ( t h e  

discharge c o e f f i c i e n t )  tha t  i s  almost unity,  and i s  a function of  Reynolds 

number. 

t o  a s u f f i c i e n t  degree t o  permit r igorous appl ica t ion  of the  data  developed 

here.  

?"ne flow through an o r i f i c e  i s  ne i ther  one-dimensional nor i sen t ropic  

While the  conventional i sen t ropic  flow equations apply t o  a per fec t  gas, 

a number of inves t iga tors  have considered t h e  i sen t ropic  flow of nonperfect 

gases.  References [4 and 51 develop equations f o r  calculat ing t h e  i sen t ropic  

flow of gases described by t h e  Van der  Waalsequation of s t a t e .  A method of 

ca lcu la t ing  the flow of  nonperfect diatomic gases using Berthelot ' s  s t a t e  

equation i s  described i n  reference [ 6 ] .  I n  references [7, 8, and 91, t h e  

authors consider t h e  flow of  gases described by the  Beattie-Bridgeman 

equation of s t a t e .  I n  addition, reference [9] presents t a b l e s  of  functions 

t h a t  a i d  i n  the  one-dimensional flow calculat ions of r e a l  a i r .  References 

[lo and 111 present  methods of estimating i sen t ropic  exponents t o  be used 

f o r  ca lcu la t ing  t h e  flow of imperfect gases through sonic-flow nozzles. 

( A  sonic-flow nozzle i s  one i n  which the  t h r o a t  ve loc i ty  equals the  l o c a l  

speed of sound. A sonic-flow nozzle has a l s o  been ca l led  a choked nozzle 

or a cr i t ica l - f low nozzle . )  Reference [12], using the  tabulated data of  

reference [l], presents  a graphical  method f o r  computing the i sen t ropic  

mass flow r a t e  of  imperfect gases. I n  reference [l3], t h e  author reviews 

t h e  sonic-flow meter and suggests methods f o r  correct ing f o r  gaseous 
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imperfections.  

one-dimensional flow of imperfect gases i s  given. The program involves the  

in t e rpo la t ion  of  s e t s  of  thermodynamic-property data  t h a t  a r e  s tored  i n  t h e  

computer. These same authors have published a s e t  of t a b l e s  ( r e f .  [l?]), for 

ca lcu la t ing  t h e  one-8imensional flow proper t ies  of r e a l  a i r .  

dynamic da ta  f o r  a i r  t h a t  a r e  involved i n  reference [15] a r e  t h e  da ta  

tabulated i n  reference [ l ] .  

reference [16]. 

mass-flow r a t e  of a i r ,  N 

t o  be ca lcu la ted .  

r a t e  ca lcu la t ion  when t h e  nozzle i s  operated subsonically.  

t h e  a i r ,  N2, 02,  n-H2, and H20 data  of reference [ l 7 ]  a r e  presented i n  

tabular  form; p-H2 da ta  a r e  a l s o  presented. 

t h a t  permit ca lcu la t ing  the  mass-flow r a t e  of N 

nozzles.  Reference [3] d i f f e r s  from references [ 2  and IT] i n  t h a t  t h e  

pressure and temperature ranges i n  reference [3] a r e  g rea t e r  than the  ranges 

i n  references [ 2  and 171. References [ 2  and 31 a l s o  contain t a b l e s  of  such 

thermodynamic p rope r t i e s  a s  compressibi l i ty  f ac to r ,  spec i f i c  hea t ,  and 

speed of  sound. I n  addi t ion,  reference [3] contains t h e  computer programs 

used i n  making t h e  ca lcu la t ions .  I n  reference [18], da ta  for ca lcu la t ing  

the  flow o f  na tu ra l  gas through sonic-flow nozzles a r e  presented; t h e  

computer program for ca lcu la t ing  these data  i s  given i n  reference [lg]. 

I n  reference [14], a computer program f o r  ca lcu la t ing  the  

The thermo- 

Sonic-flow functions f o r  steam a r e  given i n  

Reference [l7] presents  a set  of graphs t h a t  permit the 

0 2 ,  n-H2, A, He, and H 0 through sonic-flow nozzles 2' 2 

Information i s  also given on how t o  make t h e  mass-flow 

I n  reference [ 2 ] ,  

Reference [3] has tabulated data  

and He through sonic-flow 2 

I n  t h i s  repor t ,  t h e  sonic flow data  f o r  various gases, a s  presented 

i n  references [2, 3, 1.7, and 181, a r e  summarized. Since these  references 

were published, more exact ca lcu la t ions  for argon and methane have been made. 
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The more exact argon data replaces  t h a t  i n  reference [l7], and t h e  more 

exact methane data  replaces t h a t  i n  reference [18]. These data  a r e  presented 

i n  terms o f  a sonic-flow f a c t o r .  The use of  t h i s  f a c t o r  permits t h e  mass 

flow rate of these gases through sonic-flow nozzles to be calculated.  I n  

addition, the  empirzcal method, given i n  reference [l7], of  ca lcu la t ing  the  

mass-flow r a t e  of  these gases through subsonic nozzles, i s  presented. 

a l l  gases except steam, t h e  calculat ions a r e  f o r  temperatures from 250 to 

400 K, and pressures to 100x10 

500 to 800 K, and t h e  pressures to 100x10 

throughout t h i s  repor t .  

For 

5 2  N/m . For steam, the  temperatures a r e  from 

5 2  N/m , S.I. 1960 u n i t s  a r e  used 
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SYMBOLS 

2 area,  m 

speed of  sound, m/sec 

s p e c i f i c  heat  a t  constant pressure,  m / (see 

s p e c i f i c  heat a t  constant volume, m / (see 

mass flow r a t e  per  unit area,  kg/(m2 see)  

enthalpy, m /see 

i n t e g r a t i o n  constants f o r  enthalpy, K 

in tegra t ion  constants f o r  entropy 

mass flow r a t e ,  kg/sec 

pressure,  N/m 

gas constant, m2/(sec K) 

entropy, m / (see2 K) 

temperature, K 

2 2 K) 
2 2 K) 

2 2 

2 

2 

2 
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V 

Z 

Y 

Subs crip t s 

0 

i 

P 

velocity, m/sec 

compressibility factor 

specific-heat ratio 

sonic-flow factor defined implicitly by equation 12, (see K2)/m 
1 

.o 

refers to plenum station 

refers to nozzle throat station 

refers to ideal-gas condition 

refers to perfect-gas condition 

ANALYSIS 

The conditions assumed in this analysis are as follows: The gas 

is at rest in a plenum and accelerates one-dimensionally and isentropically 

to the throat of a nozzle where its speed is sonic. The measured quantities 

are the plenum pressure and temperature. The gas is not assumed to be 

perfect, and its state equation is given by 

p = ZpRT (1) 

where Z is the compressibility factor and may be expressed as a function 

of pressure and temperature or of density and temperature. The assumption 

that the flow is one-dimensional and starts from rest is represented by 

The assumption that the flow is isentropic is represented by 

s = s  0 1  

and the fact that the flow is sonic is represented by 

v1 = al 
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I n  order t o  solve equations (1) through (4), it i s  necessary t o  express 

enthalpy, entropy, and the speed of sound i n  terms of e i t h e r  pressure and 

t e a p e r a t w e ,  or densi ty  and temperature, depending on t h e  form of  t h e  

s t a t e  equation. 

Case I. Z = Z(p,T) 

The expressions f o r  enthalpy and entropy a r e  integrated forms of  Eqs. 

( 4 )  and ( 5 )  i n  reference [l?]. 

P 
- -  H R -  k, R dT - T I  [I.(%)]&+% P 

P 0 

( 5 )  

The te rqera ture  i n t e g r a l s  i n  Eqs.  (5 )  and (6) a r e  i n d e f i n i t e  i n t e g r a l s  whose 

constants of in tegra t ion  a r e  included i n  % and KS. The values o f  % 
and KS 

and (6)  a l s o  involve t h e  ideal-gas s p e c i f i c  hea t .  The term ideal-gas r e f e r s  

t o  a gas whose compressibil i ty f a c t o r  i s  invar ian t ,  with a value of unity; 

however, unlike a p e r f e c t  gas, the  s p e c i f i c  hea t  i s  a funct ion of temperature. 

This condition i s  approached as t h e  pressure of t h e  gas approaches zero, 

providing d issoc ia t ion  does not occur. 

i s  found i n  reference [l7]. The value of  a i s  obtained from 

depepd on the  choice of  the  gas reference s t a t e .  Equations ( 5 )  

The expression f o r  t h e  speed of sound 

ZzRT/az = Z - ( $9T - (7) 

where 
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If these expressions for enthalpy, entropy, and speed of sound a r e  subs t i tu ted  

i n  Eqs. ( Z ) ,  (3) ,  an; (4), and t h e  i t e r a t i o n  procedures given i n  reference 

[l7] a r e  then applied,  solut ions can be obtained for the  veloci ty ,  pressure,  

and temperature a t  t h e  nozzle t h r o a t .  

a t  t h e  nozzle throa t ,  t h e  corresponding densi ty  i s  determined through Eq. (1). 

The mass flow r a t e  per  un i t  area through t h e  sonic-flow nozzle then becomes 

Knowing the  pressure and temperature 

Case 11. Z = Z(p,T) 

The expressions for enthalpy and entropy a r e  given i n  reference [3] and 

are :  

The expression for t h e  speed o f  sound i s  found i n  reference [l7]. 

value of a i s  obtainable from 

The 

where 
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These expressions f o r  enthalpy, entropy, and speed of sound a r e  subs t i tu ted  

i n  Eqs. ( 2 ) ,  ( 3 ) ,  and (4). 

plenum density,  and f o r  density,  temperature, and veloci ty  a t  t h e  nozzle 

Equations (1) through ( 4 )  a r e  then solved f o r  .? 

th roa t .  The i t e r a t i o n  procedures involved i n  t h i s  solut ion a r e  found i n  

reference [ 3 ] .  The expression f o r  t h e  mass-flow r a t e  per  u n i t  area through 

t h e  sonic-flow nozzle i s  again given by equation (9) .  

RESULTS AND DISCUSSION 

The Sonic-Flow Factor 

The mass flow r a t e  of gases through sonic flow nozzles can be expressed 

i n  terms of  a sonic-flow fac tor ,  0, as follows: 

For a per fec t  gas, the  value 

of pressure and temperature and i s  given by 

QP o f  t h i s  sonic-flow f a c t o r  i s  independent 

where Tp 

and para-hydrogen; 5/3 f o r  argon and helium; and 4/3 f o r  steam, methane, 

i s  chosen t o  be 7/5 f o r  a i r ,  nitrogen, oxygen, normal hydrogen, 

and n a t u r a l  gas. 

For an i d e a l  gas, the  sonic-flow f a c t o r  has a value Qi that  i s  

a funct ion of temperature and is given by 



@. = l i m  @ 
1 
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(16) 

The r e s u l t s  of t h e  real-gas calculat ions a r e  presented graphical ly  i n  

Instead of  p l o t t i n g  t h e  sonic-flow f a c t o r  as a function Figs. (I) t o  (3 ) .  

of pressure and temgerature t h e  r a t i o  of  t h e  real-gas sonic-flow f a c t o r  t o  

t h e  ideal-gas sonic-flow fac tor  i s  p l o t t e d .  The reason f o r  t h i s  i s  t h a t ,  

i f  the  sonic-flow f a c t o r  i t s e l f  were p lo t ted ,  t h e  famil ies  of curves would 

cross each o ther  f o r  some of t h e  gases, making t h e  graphs d i f f i c u l t  t o  

read. 

t h e  sonic mass-flow r a t e  i s  

I n  terms of  the  ordinates  i n  Figs.  (1) t o  (3) ,  t h e  expression f o r  

where t h e  values of Qi a r e  given on the  f igures  t o  which they apply. 

I n  t h e  event t h a t  it i s  desired t o  use nozzles or ventur ies  subsonically, 

but  t h e  v e l o c i t i e s  are such t h a t  t h e  flow has t o  be considered compressible, 

t h e  following equation, derived from Eq. (27) i n  reference [l’j’], appl ies  

Equation (18) i s  not based on theory, but  i s  an approximation t o  a c t u a l  

subsonic calculat ions.  For t h e  pressure and temperature ranges involved, 

Eq. (18) reproduces t h e  subsonic ca lcu la t ions  t o  within $ percent f o r  the  

gases considered i n  t h i s  r e p o r t .  

f igures  t o  which they apply. The values o f  t h e  compressibil i ty f a c t o r  

The values ( Oi/QP) are given on t h e  

a r e  given graphical ly  i n  Figs.  ( 4 )  t o  (6)  f o r  t h e  gases considered i n  
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t h i s  r epor t .  The perfect-gas mass-flow r a t e  5 i s  given by 

I n  Figs .  (1) ta, (3) ,  ( @/Qi) i s  p lo t t ed  as  a funct ion of P and T 

2, 02, n-H2, p-H2, A, He, H 0, CH4, and na tu ra l  gas.  f o r  a i r ,  N 

i n t e r e s t i n g  r e s u l t s  i n  Fig.  (2a )  i s  t h a t  even though the  sonic-flow fac to r s  

f o r  n-H 

over t h e  range of pressures  and temperatures considered, t h i s  r a t i o  i s  

independent of temperature. 

One of t he  2 

and p-H 2 2 a r e  d i f f e r e n t ,  t he  r a t i o  (@/Qi)  i s  t h e  same; fu r the r ,  

The na tura l  gas da ta  i n  Fig,  (3b) a r e  f o r  a p a r t i c u l a r  composition. 

Therefore, t h i s  data  would not apply s t r i c t l y  to a na tu ra l  gas of  a d i f f e r e n t  

composition. However, s ince  methane i s  usual ly  the  p r inc ipa l  component of 

na tu ra l  gas, t h e  sonic-flow fac to r s  o f  na tu ra l  gases approximate those of  

methane. 

Table I l i s t s  the  sources o f  the  data  presented i n  Figs. (1) t o  (3) ,  

a s  wel l  a s  t h e  references f o r  the  compressibi l i ty-factor  and ideal-gas  

spec i f ic -hea t  data  t h a t  were used i n  the  ca lcu la t ions .  

The pressure and temperature rariges covered by some of  t he  references 

exceed t h e  ranges covered i n  t h i s  r epor t .  Table I1 l i s t s  the  a c t u a l  ranges 

covered i n  references [2,  3, 17, and 181. 

Compressibility-Factor Data 

I n  order  t o  use Eq. (18), it i s  necessary to have compressibi l i ty-factor  

da ta .  To t h i s  end, Figs.  (4) to (6) a r e  presented. Pressure and temperature 

ranges a r e  t h e  same a s  i n  the  sonic-flow r a t i o  f igu res  (F igs .  (1) to ( 3 ) ) .  
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CH4 
Nat. Gas 
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Table I. Data References 

Sonic-Flow 
Factor 

3 

Compressibility 
Factor 

1 

1 

1 

20 

20 

2 1  

22 

23 

24 

18,19,26 

Ideal-Gas 
Spec i f ic  Heat 

1 

1 

( a )  These data  a r e  presented i n  t h i s  repor t  f o r  t he  f i rs t  time. 
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Gas 
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N2 
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n-HZ 

P-H2 
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He 

H2° 

CH4 

Nat. 
gas 

Table 11. Pressure and Tern e r a t u r e  Ranges Covered i n  References. 
Pressures i n  105 N/m’ (- a t m ) ;  Temperatures i n  K.  

Ref. 2 Ref. 3 Ref. 17 R e f .  18 
( Tables ) (Tables ) (Graphs ) ( Tables ) 



FIGURE LEGENDS 

(a) Air. 

(b) Nitrogen. 

(c) Oxygen. 

Figure 1. - Ratio of the real-gas sonic-flow factor to the ideal-gas sonic- 
flow factor for various gases. 

(a) Hydrogen. 

(b) Argon. 

(c) Helium. 

Figure 2. - Ratio of the real-gas sonic-flow factor to the ideal-gas sonic-flow 
factor for various gases. 

(a) Methane. 

(b) Natural gas (fractional composition by volume, CH4-0.9272, C2Hb-O. 0361, 
C3H8-0. 0055, iC4H10-0. 0007, nC4H10-Q OOlQ, N2-0. @18, C02-0. 0077). 

Figure 3. - Ratio of the real-gas sonic-flow factor to the ideal-gas sonic - 
flow factor for various gases. 

(a) Air. 

(b) Nitrogen. 

(c) Oxygen. 

Figure 4. - Compressibility factor for various gases. 

(a) Normal and para hydrogen. 

(b) Argon. 

(c) Helium. 

(d) Steam. 

Figure 5. - Compressibility factor for various gases, 

(a) Methane, 

(b) Natural gas- (composition i s  the same as in fig. 3(b)), 

Figure 6. - Compressibility factor for various gases. 
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